219. Cob(1)alamin-Catalyzed Skeletal Migrations Observed during the Reduction of 4β -(tert-Butyl)-1*a*-(1-methylvinyl)cyclohexanecarbaldehyde¹)

by Terence S. Wan and Albert Fischli^{*}

Pharmaceutical Research Department, *F. Hoffmann-La Roche & Co., Ltd., CH-4002 Basle*

(2.1V.84)

Summary

The cob(1) alamin($1(I)$)-catalyzed²) transformation of the aldehyde 2 has been studied *(cJ Table I).* Kinetic examinations showed a rapid isomerization of **2** to **3** *(cf. Fig.1* and 2). From the transformations in glacial AcOH, the two cyclopropanols **5** and **7** were isolated as main products *(cf. Tables 1-3* and *Fig.1* and 2). Using large amounts of **1(1),** the aldehyde **4** was very slowly transformed. Accepting the intermediate formation of 6 interconnected Co-complexes, *i.e.* **A, B, C, D, E,** and **F** *(cf. Scheme)*, the generation of all the products observed can be explained.

1. Reductions Mediated by Cob(I)alamin (1(I))²) Starting from 2 and 4. – Varying the solvent and the amount of granular Zn present, the β , *y*-unsaturated aldehyde 2, *i.e.* 4P-(tert-butyl)-l *a-(* 1 **-methylvinyl)cyclohexanecarbaldehyde,** was reduced using cob(I)alamin $(1(I))^2$) as catalyst *(cf. Table 1, Exper. 1-3).*

In *Exper. 1*, the two cyclopropanols $5 \times (41\%)$ and $7 \times (30\%)$ were the main products, and the saturated aldehyde **9** was detected in 15.1 % yield. In *Exper.* 2, the same derivatives, i.e. **5** (44.1%) and **7** (33.4%), were again isolated as the main products. The saturated aldehyde **9** was present in 2.7% yield only; this small amount of **9** can be explained by the small quantities of granular Zn present *(cf. Chap. 4).* Interestingly, in *Exper. 3,* the saturated aldehyde **9** (45.2%) was the main product, the two cyclopropa-

^{&#}x27;) 14th Communication in the series 'Cob(1)alamin as Catalyst'; for the preceeding paper, see [la].

 2 For the structural formulae of cob(1)- and cob(II1)alamin **(1(I),](Ill))** *cfi Scheme I* in [la].

No.		<i>Exper.</i> Starting Reaction material conditions ^a)	time	Reaction Products yield [%]												
				2	3	4	5	6	7	8	9	10	11	12	13	14
	2	A	18 _h	1.2	0.4	3.8	-41	0.15	30	0.15	-15.1	2.5	2	0.2		D) \sim
					$0.7 \quad 0.25$	3.5	36.2 < 0.1		28.1 < 0.1		13	2.2	1.7	< 0.1		
2		B	18 h	10.6 3.5		27		44.1 < 0.1	33.4 < 0.1		2.7	0.4	0.4	$\overline{}$		
3	2	\mathcal{C}	18 _h	0.3	0.1	2.5	25.7	$\overline{}$	14.2	$\overline{}$	45.2	6.5	4	0.3	$\overline{}$	
$\overline{4}$		D	18 _h	$99.4 -$												
5	,	Ε	18 _h	99.6	\sim											
6	2	F	18 _h	99.4	\sim											
7	4	A	18 _h			99									0.6	\mathfrak{b}_1 $-$
						89								÷.	0.5	÷
8	4	G	7d			98								-	18	ণ $\overline{}$
9	4	Н	7 d			90		1.1 < 0.1		0.7 < 0.1	3.7	0.5	0.4	$\overline{}$	2.7	0.2^b)
						81			0.5	\sim	$\mathbf{2}$	< 0.1	< 0.1	÷	$\overline{2}$	< 0.1 ^c)

Table 1. $Cob(I)$ alamin-Dependant Reductions and Blank Experiments with 2 and 4

 $a₁$ A: Cob(1)alamin from 0.1 mol-equiv. of **I,** 20 mol-equiv. of Zn, AcOH, Ar, r.t.

B: Cob(1)alamin from 0.1 mol-equiv. of 1, 2 mol-equiv. of Zn, AcOH, Ar, r.t.

C: Cob(I)alamin from 0.1 mol-equiv. of 1, 20 mol-equiv. of Zn, $AcOH/H₂O$ 4:1, Ar, r.t.

D: 20 mol-equiv. of Zn, AcOH, Ar, r.t.

E: Cob(II)alamin from 0.1 mol-equiv. of 1, SnCl₂.2H₂O (5 mol-equiv.), AcOH, Ar, r.t.

F: Cob(II)alamin from 0.1 mol-equiv. of **I**, SnCl₂.2H₂O (2 mol-equiv.), AcOH/H₂O 4:1, Ar, r.t.

G: 60 mol-equiv. of Zn, AcOH, Ar, r.t.

H: Coh(1)alamin from 0.5 mol-equiv. of **1,** 60 mol-equiv. of Zn, **AcOH,** Ar, r.t.

 b GC data from the crude product.

 \mathfrak{c}_1 Yield of product after chromatography.

> nols **5** and *7* being produced in 25.7 and 14.2% yield, respectively. In all three experiments, the aldehydes **2** and **3** as well as the cyclopropanols **5** and *7* have been formed in similar proportions, *i.e.* $2/3 = 3.0, 5/7 = 1.32 - 1.81$.

> A cob(I)alamin-catalyzed reduction of 2-[4-(tert-butyl)-1-cyclohexenyl]-2-methylpropionaldehyde **(4;** *Exper.* 7) caused almost no consumption of the starting aldehyde. Even in the presence of high amounts of **1(1), 4** was very slowly reduced *(Exper.9). Inter alia, traces of the cyclopropanols* $5 (1.1\%)$ and $7 (0.7\%)$ and of the alcohol 13 (2.7%) could be detected.

> **2. Blank Experiments.** - As **1(I)** formed in our experiments from Zn in **AcOH** was shown to be metastable under acidic conditions [2], it was necessary to establish which oxidation state, *i.e.* **1(I)** and/or **1(II),** is accounting for the transformations observed starting from **2.** A blank experiment omitting the cobalamin catalyst led to unreacted starting material (99.4%; *cf. Table 1, Exper. 4*). Two experiments, one using AcOH $(glacial)$ and the other $ACOH/H, O$, running under conditions excluding the presence of **l(I), i.e.** applying SnCl, to reduce **l(II1)** to **l(I1)** [3], also led to the starting material **2** (99.6 and 99.4%, resp.; *Exper 5* and 6). Therefore, the transformations of *Exper. 1-3* must be brought about by **l(1).**

> **A** blank experiment starting from **4** using a larger excess of Zn and running for 7 d caused almost no transformation *(Exper.* 8); in low yield, the alcohol **13** was detected. This alcohol as well as the corresponding acetate **14** present in the product mixture from *Exper. 9* are, therefore, assumed to be formed by direct interaction of Zn with the aldehyde **4.**

Fig. 1. *Kinetics of the I(1)-cutulyzed trunsformuiions starting from* **2** *in the presence of 20 mol-equiv. of Zn*

3. Kinetic Studies. – The kinetics of the 1(I)-catalyzed transformations starting from **2** *(cf. Fig.1)* were studied repeating *Exper. 1* under conditions guaranteeing a better control of the absence of H,O *(cf. Exper. Part).* From the reaction mixture, aliquots were withdrawn after *1/4* h, % h, 1 h, 2 h, 4 h, 8 h, 24 h, 7 d, 14 d, 20 d, and 31 d. In *Fig.1,* a synopsis is presented showing only the products **3,** 5, **7, 9,** and the starting material **2** (complete data in the *Exper. Part).* The aldehyde **2** is rapidly consumed disappearing after *ca.* 4 h. After 15 min, the β , *y*-unsaturated aldehyde 3 was present in 18% yield; subsequently, 3 behaved like 2, being completely consumed after *ca.* 4 h. The two major products 5 and **7** reached a top level at the time of almost complete consumption of **2** and **3.** In minor amounts, the aldehyde **9** was produced. After this starting phase ending at *ca.* 4 h, the reaction showed equal product composition for a long time. However, when the majority of Zn was consumed, i.e. after about 7 d, a new phase started characterized by a gradual colour change from green to yellow and then to pink. At the same time, consumption of the two cyclopropanols *5* and **7,** generation of **2** and **3,** and slightly increasing amounts of aldehyde **9** were observed.

As the aldehyde **3** was already formed after 15 min, its generation from **2** must be a fast process catalyzed by **l(1).** The catalyst l(1) was prepared *in situ* from acetatocob(II1)alamin and Zn; the use of small quantities of Zn should, therefore, allow to visualize the generation of **3** from **2.** Data from such an experiment, *i.e.* the transformation of **2** in the presence of only 1 mol-equiv. of Zn in AcOH, are presented in *Fig.* 2 (samples withdrawn after *Y4* h, *Y2* h, 1 h, 2 h, 4 h, 8 h, 24 h, 4 d, 7 d, 11 d, and 19 d; complete data in the *Exper. Part).* Again, a fast generation of **3** from **2** occurred. After

Fig. 2. *Kinetics of the l(I)-cnrulyzed transformutions sturiing from* **2** *in zhe presence qf i moi-eyuiv. of Zn*

4 d, the Zn was consumed and a maximal yield of the two cyclopropanols **5** and **7** and a minimal amount of **2** and **3** were observed. The initial phase, lasting for the first 4 d, was characterized by the fast formation and subsequent consumption of *3* as well as by a decrease of **2** and by the formation of **5** and **7;** the saturated aldehyde **9** was present in minor amounts. In the terminal phase initiating after 4 d, the two cyclopropanols **5** and **7** were consumed and increasing amounts of **2** and **3** were present. The saturated aldehyde **9** was found in slightly increasing amounts during this phase. Obviously, there was not enough Zn present to consume **2** and **3** completely. The initial and the terminal phase in this experiment parallel the starting and terminal phase in the experiment presented in *Fig. I.*

In both kinetic experiments, *3* was produced from **2.** Subsequently, **2** and **3** were consumed, and at the same time **5** and **7** were formed. After consumption of the Zn working under conditions not excluding the invasion of *O,,* the two cyclopropanols *5* and **7** are oxidized back to the two β , y-unsaturated aldehydes **2** and **3** [1a]. Observing the amounts of the saturated aldehyde **9** present, such a reversibility was not detected in the above two experiments. A detailed study of the cob(I1I)alamin-mediated transformation starting from **5** and **7** has been published [la].

4. Discussion. - Under the conditions of the experiment displayed in *Fig.1,* the starting aldehyde **2** was consumed after *ca.* 4 h. Under identical experimental conditions, the structurally closely related double bonds in 4β -(tert-butyl)-1 α -(1-methyl**vinyl)cyclohexanecarbonitrile** and $4β$ -(tert-butyl)-1α-(l-methylvinyl)cyclohexanemethanol were saturated showing half-lifes of 1 and 4 h, respectively [lb]. This compares well with the rapid consumption of **2.** Contrasting these rapid transformations, **4,** 2-[4-(tert -butyl)-1 **-cyclohexenyl]-2-methylpropiononitrile,** and 2-[4-(tert-butyl)- l-cyclohexenyl]-2-methylpropanol revealed to be rather inert towards **l(1).** Under forcing conditions using high amounts of **1(I)** and Zn, these derivatives were only slowly trans-

formed *(cf.* [lb]). In order to explain the products observed starting from the two β ,y-unsaturated nitriles and the two homoallylic alcohols, *(tert*-alkyl)cobalamins have been formulated [lb]. In analogy to such a mechanism, initial generation of the *(tert*alky1)cobalamins **A** from **2** and **C** and **D** from **4** is formulated in this paper as well *(cf. Scheme).* Alkylcobalamin **A** is one of the 6 Co-complexes, *i.e.* 4 alkylcobalamins **A, C, D,** and **F** and *2* (cyclopropano1o)cobalamins **B** and **E,** represented within the black frame in the *Scheme.* Studying the l(II1)-mediated oxidation of **5** and **7** at room temperature in AcOH, these cobalamin complexes were shown to be in equilibrium [la]. From these interconnected intermediates, the generation of all the products observed can be explained.

From **A, C, D,** and **F,** the aldehydes **2, 3,** and **4** can be produced by reductive elimination. At the same time, **1(I)** is regenerated, which can rapidly attack **2** and **3** again. Initially, this leads to isomerization of **2** and ultimately to consumption of **2** and **3.** The aldehyde **4** produced in small amounts starting from **2** was shown to be rather stable in presence of **1(I)** *(cJ Exper. 7* and *9).* The slow accumulation of this derivative (see *Exper. Part)* can, therefore, easily be understood. The formation of the two cyclopropanols **5** and **7** can be explained as well, e.g. by ligand exchange from **B** and **E.** Under the conditions applied, cob(II1)alamin produced after ligand exchange should rapidly be reduced to l(1). Therefore, the cyclopropanols **5** and **7** should accumulate during the reaction. Our experiments show this to be the case *(cf. Fig. 1* and *2).* From the 4 (tert-alky1)cobalamins **A, C, D,** and **F,** reductive cleavage (cf. e.g. [lb]) should lead to the corresponding saturated aldehydes. **As** this reaction has been shown to follow retention of configuration [le], **9, 12, 11,** and **10** should be produced from **A, C, D,** and **F.** The 4 saturated aldehydes **9-12** have shown to be present in the reaction mixtures *(cf. Table 1* and *Exper. Part).*

The *6* interconnected Co-complexes displayed within the black frame of the *Scheme* are arranged in two horizontal rows. Focussing on the two termini of each horizontal row, *i.e.* **A, C** and **D, F,** the rearrangements can be characterized as diretentive diatropic migrations.

The authors would like to thank their colleagues from the Central Research Units and in particular Dr. *A. Dir.xherl* (microanalysis), Dr. *M. Vecchi (CC),* Drs. *Englerr* and *Arnold* (NMR), *G. Oesterheld* (GC/MS) and *W. Meister* (MS) for analytical and spectroscopic data.

Experimental Part

General Remarks. See [1b]. The cob(1)alamin-catalyst was according to the procedure published in [1c].

A. Reductions Mediated by l(1). - a) *Exper. I.* To the catalyst prepared from 330 mg (0.1 mol-equiv.) of cyanocob(1lI)alamin **(1)** in 30 ml of AcOH and 3.1 g (20 niol-equiv.) of activated granular Zn were added 500 mg of **2** in 16 ml of AcOH. The suspension³) was stirred in the dark at r.t. for 18 h under Ar. After aq. extraction (Et₂O), 495 mg (99% recovery by weight of starting 2) of a mixture was obtained and analyzed by NMR, TLC, and GC. Product distribution (GC): see *Table 1*. The crude product was purified by chromatography (SO2, Et,O/hexane, the 7 aldehydes were eluted in **1** fraction); for yields, see *Tuble I.* Data of **2, 4, 9, 11,** and **12:** *cf.* [Ib]. Data of **5, 7,** and **10:** see [Id]. Data of **3, 6,** and **8:** see [la].

b) *Exper.* 2. To the catalyst (from 66 mg (0.1 mol-equiv.) of **1)** in 7 ml of AcOH and 63 nig (2 mol-equiv.) of activated granular Zn were added 100 nig of **2** in 2 ml of AcOH. The suspension3) was stirred in the dark at r.t. for 18 h under Ar. After aqueous extraction $(Et₂O)$, 94 mg (94% recovery by weight) of a mixture was obtained and analyzed as above. Product distribution (CC): see *Table 1.*

c) *Exper. 3.* Conditions exactly as in *E-rper.1,* but replacing AcOH by AcOH/H,O 4:1 (97% recovery by weight). Product distribution (GC): see *Table I.*

d) *Exper.* 7. Conditions exactly as in *E.xper.1,* but replacing **2** by **4** (96.5% recovery by weight). Product distribution **(GC)** and yields after chromatography (SO,, Et,O/hexane): see *Table I.* Data of **13:** *cf.* [Ib].

e) *Exper.* 9. To the catalyst (from 1.63 g (0.5 mol-equiv.) of **1)** in 30 ml of AcOH and 9.4 g (60 mol-equiv.) of activated granular Zn were added 500 mg of **4** in 16 ml of AcOH. The green3) suspension was stirred in the dark at r.t. for 7 d under **Ar** and then treated as in *Exper. 1* (97.2% recovery by weight). Product distribution (GC) and yields after chromatography (SiO₂, Et₂O/hexane, the 4 aldehydes were eluted as one fraction): see *Table I.*

Data of 2-*[4-/* tert-*butyl*)-1-cyclohexenyl]-2-methylpropyl *Acetate* (14): R_f 0.33 (CH₂Cl₂/hexane 2:1), t_R (GC, 50-330") 13.2 min. IR (liq.): 1743 *(C=O),* 1392, 1365, 1290, 1244, 1038. 'H-NMR: 0.86 (s, 9H, (CH,),C); 0.86-2.2 *(m, 7H, CH₂, CH)*; 1.04 *(s, 6H, (CH₃)*₂C); 2.04 *(s, 3H, CH₃COO)*; 3.90 *(AB('q'), J* = 11, $v_{AB}/2$ = 6, 2H, CH₂OOC); 5.4-5.58 *(m, 1H, =CH)*. **MS**: 252 (1, *M⁺), 206 (1), 192 (14, M⁺ - CH₃COOH), 179 (19, M*⁺ - CH₃COOCH₂), 135 (49), 123 (57, *M*⁺ - CH₃COOCH₂ - CH₂=C(CH₃)₂), 109 (36), 93 (29), 79 (25), 57 $(100, (CH₃)₃C⁺), 43 (50, CH₃CO⁺).$

B. Blank Experiments. a) *E-xper.* **4.** To 500 mg of **2** in 46 ml of AcOH were added 3.1 g (20 mol-equiv.) of activated granular Zn. The suspension was then treated as in *Exper. 1* (96% recovery). Product distribution: 2 (99.4 *Yo).*

b) *Exper. 5.* To the catalyst (from 66 mg (0.1 mol-equiv.) of **1)** in 7 ml of AcOH were added 541 mg (5 mol-equiv.) of SnCl₂.2H₂O. After stirring for 30 min at r.t. under Ar, 100 mg of 2 in 2 ml of AcOH were added. The suspension was stirred in the dark at r.t. for 18 h under Ar. A colourless solution and a yellow precipitate was formed. After extraction (Et₂O), 93 mg (93% recovery) of product was isolated. Product distribution (GC): **2** (99.6%).

³) After 5-10 min stirring under Ar, the colour turned to green.

c) *Exper. 6.* Conditions as in *Exper. 5,* but replacing AcOH by AcOH/H₂O 4:1 and using only 2 mol-equiv. of SnCI2,2H,O (clear dark yellow solution after addition of **2;** 95% recovery). Product distribution GC: **2** (99.4%).

d) *Exper.* 8. To a solution of 300 mg of **4** in 28 ml of AcOH were added 5.65 g (60 mol-equiv.) of activated granular Zn. The suspension was stirred in the dark at r.t. for 7 d under Ar. After aq. workup (Et₂O), 298 mg (99.5% recovery) of mixture was obtained. Product distribution (GC): see *Table* 1.

C. Kinetic **Experiments.** a) *Exper. presented in* Fig. 1 *and* Table 2. Conditions exactly as in *Exper. I* (see *Chap. A),* but using AcOH from a fresh bottle. From the stirred suspension, aliquots of 2 ml were withdrawn using a syringe after 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, 7 d, 14 d, 20 d, and 31 d. After aq. extraction (Et₂O) of the aliquots, the weight recovery was 91-99%. The crude products were analyzed by TLC, NMR, and GC. Product distributions: see *Table* 2.

b) *Exper. of* Fig. 2 *and* Table 3. Conditions exactly as described in *Chap. A,* but using only 1 mol-equiv. of Zn. Aliquots of 2 ml after 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, 4 d, 7 d, 11 d, and 19 d (recovery 89-99%). Product distributions: *Table 3.*

Table 2. *Product Distributions in the AIiquots Obrained after Treatment of* **2** *with* **l(1)** *in the Presence of 20 mol-equiti. of Zn*

Yield	Time											
[%]	$\frac{1}{4}$ h	$\frac{1}{2}$ h	1 _h	2 _h	4 h	8 h	24 h	7 d	14d	20d	31 d	
$\mathbf{2}$	59.1	29.1	15.3	8.7	0.6	0.6	0.35	0.8	3.5	11.5	24,9	
3	18	9.6	5.2	3	0.2	0.2	0.1	0.25	1.1	4	8.6	
4	0.8	1.3	1.5	1.6	1.6	1.7	1.7	2	2.6	3.2	3.3	
5	τ	30	40	46.7	50.3	46.6	47.1	44	33.7	20.7	$\overline{}$	
6	-	ω .	-	-	-	-	0.2	\overline{c}	5.8	8.7	10.5	
7	3.7	25	32	32.6	38	37.2	36.7	33.8	26.3	16.7	\overline{a}	
8	-	$\overline{}$	-	$\overline{}$	\sim		0.2	2	5.9	9.0	10.6	
$\boldsymbol{9}$	2.2	3.1	4.0	5.5	6.7	9	9.6	10.9	12.3	16.3	19.8	
10	0.5	0.5	0.7	0.8	0.9	1,4	1.4	1.5	2.3	2.7	3.4	
11	0.2	0.2	0.2	0.4	0.9	0.8	1.1	1.2	1.7	$\overline{2}$	2.5	
12	$\overline{}$		--		-	∽	-	0.1	0.2	0.3	0.3	
2/3	3.28	3.03	2.94	2.9	3.0	3.0	3.5	3.2	3.18	2.88	2.90	
5/7	1.89	1.2	1.25	1.43	1.32	1.25	1.28	1.30	1.28	1.24	$\overline{}$	

Table 3. *Product Distributions in the Aliquots Obtained after Treatment of* **2** *with* **l(1)** *in the Presence of 1 mol-eauiv. of Zn*

REFERENCES

- [I] a) *T.S. Wan* & *A. Fischli,* Helv. Chim. Acta 67, 1461 (1984); b) *P. Schonholzer, D. Suss, T.S. Wan* & *A. Fischli,* Helv. Chim. Acta *67,* 669 (1984); c) *A. Fischli* & *D. Suss,* Helv. Chim. Acta 62, 48 (1979); d) *P. Schiinholzer, T.S. Wan* & *A. Fischli,* **Helv.** Chim. Acta 67, 684 (1984); e) *A. Fischli* & *P.M. Muller,* Helv. Chim. Acta 63, 1619 (1980).
- [2] a) *H. Diehl* & *R. Murk,* Iowa State **COIL J.** Sci. 26, 555 (1952); b) *J..4. Hill, J. M. Prart* & *R. J. P. Williams,* **J.** Theor. Biol. 3, 423 (1962); c) *J.M. Pratt,* **J.** Chem. SOC. *1964,* 5154; d) *S.L. Tackett, J. W. Collat* & *J.C. Ahhott,* Biochemistry *2,* 919 (1963); e) *P. K. Das, H. A. 0. Hill, J. M. Pratt* & *R. J. P. Williams,* **J.** Chem. SOC. **(A)** *1968,* 1261.
- [3] *J. A. Hill, J. M. Prart* & *R. J. P. Williams,* **J.** Theor. Biol. 3, 423 (1962).